I do see synbio as the most promising source of new materials with a huge range of properties, scalable manufacturing, and ability to come down cost curves amongst other tailwinds. Graphene, as an example of perhaps a nanotech material, is also scaling well in an array of uses after surviving a hype cycle. Metamaterials are talked about a lot, but seems like we're still earlier in their commercialization from my limited understanding of them.
On the history of the development of plastics, this is thorough and one of the better resources I've found. It's a 20 part series of articles (and counting since last I checked). I've linked all of them here as the url path naming convention is inconsistent.
Tracing the History of Polymeric Materials: Part 1
Tracing the History of Polymeric Materials--Part 2
Tracing the History of Polymeric Materials, Part 3
Tracing the History of Polymeric Materials, Part 4
Tracing the History of Polymeric Materials: Part 5
Tracing the History of Polymeric Materials: Part 6
Tracing the History of Polymeric Materials: Part 7
Tracing the History of Polymeric Materials: Part 8
Tracing the History of Polymeric Materials: Part 9
Tracing the History of Polymeric Materials: Part 10
Tracing the History of Polymeric Materials: Part 11
Tracing the History of Polymeric Materials: Part 12
Tracing the History of Polymeric Materials, Part 13
Tracing the History of Polymeric Materials: Part 14
Tracing the History of Polymeric Materials: Part 15
Tracing the History of Polymeric Materials: Part 16
Tracing the History of Polymeric Materials: Part 17
Tracing the History of Polymeric Materials: Part 18
Do more with more indeed! To that end, I really like Aurelia Institute's vision for human habits in LEO and beyond.
I've looked mostly at progress from an energy lens, and I think the upper bound constraint for progress is relevant there too.
Coal was restricted largely to space heating until the steam engine, which itself was restricted to stationary applications until the steam locomotive. Oil's first beachhead was kerosene lamps, decades before internal combustion engines were commercialized. Electricity needed the build out of vast, centralized grids and large coal and hydro power stations. I wrote more about this in this section of a recent long read.
I'm also very interested in the question of how to best accelerate the "dark matter" ecosystem and fast track the next AlexNet in whatever domain it happens to be. I too would be interested to see examples of domains that require minimal infrastructure and dark matter.
Sure thing, thanks for the link!
True atomic scale manufacturing is definitely an exciting future tech! One angle from some proponents of cell-free catalysis is that enzymes is a path to atomic scale manufacturing and assembly. For example, Aether Bio has nano-manufacturing in the spirit of what you are saying as their vision.